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Abstract
The effect of direct spin–phonon interactions on spin–orbit-driven coherent oscillations in a
single quantum dot proposed by Debald and Emary (2005 Phys. Rev. Lett. 94 226803) is
investigated theoretically in terms of the perturbation treatment based on a unitary
transformation. It is shown that the decoherence rate induced by acoustic phonons strongly
depends on the spin–orbit coupling strength, the magnetic field strength and the dot size.

1. Introduction

The past few years have seen great progress in both theory
and experiment of quantum computation [1, 2]. Quantum
computation based on semiconductor materials has become
one of the most hopeful and realizable technologies for
computation [3, 4]. One critically important technology
for quantum computation and information processing is
manipulating electron spins [5–8]. Loss and DiVincenzo [9]
have proposed a scheme to use the spin state of coupled single-
electron quantum dots. Another method for realizing quantum
computation is using excitonic Rabi oscillation in quantum
dot (QD) systems. Zrenner et al [10] have demonstrated
that such excitonic coherent oscillations can be converted into
deterministic photocurrents in a quantum dot system. On
tuning an external gate voltage, the electron generated in
the QD can tunnel out into nearby contacts. This process
generates a photocurrent signal that is a weakly disturbed
probe of the coherent state of the system. Kato et al [11]
successfully manipulated 2D electron spins by a gigahertz
electric field. Recently, the spin–orbit interaction known
as the Rashba effect has been considered to be a possible
control of electron spin states via gate voltages [12–14].
More recently, Debald and Emary [15] have proposed an
experimental scheme to observe a spin–orbit-driven Rabi
oscillation in quantum dot systems. They considered the
effects of spin–orbit interaction on electrons in a small, few-
electron lateral quantum dot. However, they did not consider
the influence of the environment on the coherent oscillations.

Decoherence of a quantum system due to coupling to the
environment is a great obstacle in experiment and in practical
usage. In QD systems, phonons play an important role in
the decoherence process. In this work, we will consider the
phonon effect, which is considered to play a significant role in
such a spin–orbit-driven coherent oscillation. Zhu et al [16]
have shown that the damping rate of excitonic oscillation in a
nanocavity depends on the exciton–phonon coupling constant
and the vacuum Rabi frequency in terms of the perturbation
method based on a unitary transformation. On this basis,
we investigate the effect of spin–phonon interaction on a
single InGaAs quantum dot system with Rashba spin–orbit
interaction, which can be manipulated by an external gate
voltage [17–19]. We will study how spin–phonon interaction
and magnetic field influence the oscillation and demonstrate
that such a coherent oscillation is very sensitive to the magnetic
field.

2. Theory

We consider a simple two-dimensional quantum dot with
parabolic lateral confinement potential in a perpendicular
magnetic field B which points along the z direction. Then the
electron system can be described by the Hamiltonian [15],

Hs = (p + e
c A)2

2m∗ + m∗

2
ω2

0(x2 + y2) + 1

2
gμB Bσz, (1)

where p is the linear momentum operator of the electron,
A(r) = B

2 (−y, x, 0) is the vector potential in the symmetric
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gauge, ω0 is the characteristic confinement frequency, and
σ = (σx , σy, σz) is the vector Pauli matrices. m∗ is the
effective mass of the electron and g its gyromagnetic factor.
μB is the Bohr magneton. In the second quantized notation,
equation (1) becomes

Hs = (a+
x ax + a+

y ay + 1)h̄ω̃ + h̄ωc

2i
(a+

x ay − axa+
y )

+ 1
2 gμB Bσz, (2)

where ωc = eB
m∗c and ω̃2 = ω2

0 + ω2
c

4 . If we set

a+ = 1√
2
(ax − iay), a− = 1√

2
(ax + iay), (3)

then the Hamiltonian (2) can be written as

Hs = n+h̄ω+ + n−h̄ω− + 1
2 gμB Bσz, (4)

where n̂+ = a+
+a+, n̂− = a+

−a− and |n+n−〉 1√
n+!n−! (a

+
+)n+

(a+
−)n− |0〉. In what follows we include the spin–orbit

interaction, which is described as the Rashba Hamiltonian in
this system [20],

Hso = −αR

h̄

[(

p + e

c
A

)

× σ
]

z
, (5)

where αR is the spin–orbit coupling constant, which can be
controlled by the gate voltage in experiment. On substituting
equation (3) into (5), then

Hso = αR

˜l
[γ+(σ+a+ + σ−a+

+) − γ−(σ−a− + σ+a+
−)], (6)

where γ± = 1 ± 1
2 (˜l/ lB)2, ˜l = (h̄/m∗ω̃)

1
2 and lB =

(h̄/m∗ωc)
1
2 .

The Hamiltonians of the phonon bath and its coupling to
the electron spin can be written as follows [9, 21]:

Hph =
∑

q

h̄ωqb†
qbq, (7)

Hph−s = 1
2σz

∑

q

h̄Mq(b
†
q + bq), (8)

where b†
q (bq) and ωq are the creation (annihilation) operator

and energy of the phonons with wavevector q, respectively.
Mq is the spin–phonon coupling constant. The effects of the
phonon bath are fully described by a spectral density

J (ω) =
∑

q

|Mq|2δ(ω − ωq). (9)

Hence we obtain the total Hamiltonian of the electron and
phonon bath:

H = Hs + Hso + Hph + Hph−s

= h̄ω+a+
+a+ + h̄ω−a+

−a− + 1
2 gμB Bσz

+ αR

˜l
[γ+(σ+a+ + σ−a+

+) − γ−(σ−a− + σ+a+
−)]

+
∑

q

h̄ωqb†
qbq + 1

2σz

∑

q

h̄Mq(b
†
q + bq). (10)

Performing a unitary rotation of the spin such that σz → −σz

and σ± → −σ∓, we arrive at the Hamiltonian

H = h̄ω+a+
+a+ + h̄ω−a+

−a− − 1
2 gμBσz

+ αR

˜l
[γ−(σ+a− + σ−a+

−) − γ+(σ−a+ + σ+a+
+)]

+
∑

q

h̄ωqb†
qbq − 1

2σz

∑

q

h̄Mq(b
†
q + bq). (11)

We now derive an approximation form of this Hamiltonian
by borrowing the observation from quantum optics that the
terms preceded by γ+ in equation (11) are counter-rotating,
and thus negligible under the rotating-wave approximation
when the spin–orbit coupling is small compared to the
confinement [15, 22].

H = h̄ω+a+
+a+ + h̄ω−a+

−a− + 1
2 |g|μBσz + λ(σ+a−

+ σ−a+
−) +

∑

q

h̄ωqb†
qbq − 1

2σz

∑

q

h̄Mq(b
†
q + bq), (12)

where λ = αRγ−/˜l. Since g is negative in InGaAs, we choose
the absolute value |g| of g.

In order to solve the above Hamiltonian, we rewrite it as
follows:

H = Hn + HI , (13)

where

Hn = h̄ω+a+
+a+ + h̄ω−a+

−a− + 1
2 |g|μBσz, (14)

HI =
∑

q

h̄ωqb†
qbq − 1

2σz

∑

q

h̄Mq(b
†
q + bq)

+ λ(σ+a− + σ−a+
−). (15)

In what follows we will use the method proposed by Zhu et al
[16] to treat these Hamiltonians. Then we apply two canonical
transformations to the Hamiltonian (15),

H ′ = eiHnt HI e−iHn t , (16)

H ′′ = eA H ′ e−A, (17)

with the generator

A =
∑

q

Mq

2ωq
ξq(b

†
q − bq)σz, (18)

where ξq is a variational parameter, which can be determined
later. Then the transformed Hamiltonian is decomposed into
three parts [16]:

H ′′ = H ′′
0 + H ′′

1 + H ′′
2 , (19)

where

H ′′
0 = ηλ(σ+a− + σ−a+

−) +
∑

q

ωqb†
qbq

−
∑

q

Mq

2ωq
ξq(2 − ξq), (20)

H ′′
1 = 1

2

∑

q

Mq(1 − ξq)(b
†
q + bq)σz − ηλ(σ+a− − σ−a+

−)

×
∑

q

Mq

ωq
ξq(b

†
q − bq), (21)

2



J. Phys.: Condens. Matter 20 (2008) 465207 Z Lu et al

H ′′
2 = λσ+a−

{

exp

[

∑

q

Mq

ωq
ξq(b

†
q − bq)

]

− η

}

+ λσ−a+
−

{

exp

[

−
∑

q

Mq

ωq
ξq(b

†
q − bq)

]

− η

}

+ ηλ(σ+a− − σ−a+
−)

∑

q

Mq

ωq
ξq(b

†
q − bq) (22)

where η is a variational parameter which can be adjusted
to minimize H ′′

1 and H ′′
2 . It is obvious that H ′′

0 can be
solved exactly because the electron spin and the phonons are
decoupled. Following the method [16], we can obtain the
variational parameters ξq and η respectively as follows:

ξq = ωq

ωq + 2η
m
, (23)

η = exp

(

−
∑

q

M2
q

2ω2
q
ξ 2

q

)

, (24)

where 
m = λ
√

m + 1 (m = 0, 1, 2, . . .). The population
inversion of electron spin is given by

W (t) = 〈{0q}|〈↑|eiH ′′tσz e−iH ′′t |↑〉|{0q}〉
= 1

4π i

∮

e−iEt dE

E − 2η
m − ∑

q
V 2

q

E−ωq+i0+

+ 1

4π i

∮

eiEt dE

E − 2η
m − ∑

q
V 2

q

E−ωq−i0+

, (25)

where |{0q}〉 stands for the vacuum state of the phonon, |↑〉
is the spin-up state and Vq = 2η
m Mqξq/ωq. The real and

imaginary parts of
∑

q
V 2

q

E−ωq±i0+ are denoted as R(E) and
∓γ (E),

R(ω) = −(2η
m)2
∫ ∞

0

J (ω′) dω′

(ω′ − ω)(ω′ + 2η
m)2
, (26)

γ (ω) = π(2η
m)2 J (ω)/(ω + 2η
m)2. (27)

The spectral density of the phonon bath is described by [23]

J (ω) = 2αω3 e−(ω/ωl )
2
, (28)

where α is the spin–phonon coupling constant and ωl = c/L0

is the cut-off frequency (c is the sound speed and L0 is the size
of the quantum dot).

The integral in equation (25) can be evaluated and in the
second order approximation the result is

W (t) = cos(ωmt) e−γm t , (29)

where
γm = 4πα(ηλ)3(m + 1)

3
2 e−4(m+1)(

ηλ

ωl
)2

, (30)

and ωm is the solution of the equation

ω−2η
m+(2η
m)2
∫ ∞

0

J (ω′) dω′

(ω′ − ω)(ω′ + 2η
m)2
= 0. (31)

Figure 1. The population inversion as a function of time with two
magnetic fields. The parameters used are L0 = 150 nm,
α = 0.05 ps2, g = −4 and αR = 0.8 × 10−12 eV m.

Equation (29) obviously stands for a damped coherent
oscillation with frequency ωm and damping rate γm . If there
is no spin–phonon interaction (α = 0), then γm = 0, W (t) =
cos(2
mt) = cos(2λ

√
m + 1t), so the coherent oscillation

in this system would not damp out as shown by Debald and
Emary [15]. Since λ = αRγ−/˜l, we can alter the magnetic
field strength to control the frequency of the oscillation and
the damping rate. On the other hand, it is interesting in
our analytical solutions that if we turn off the magnetic field
the ‘Rabi frequency λ’ will not be equal to zero, then the
oscillations still exist due to spin–orbit coupling.

For illustration of numerical results, we only consider the
condition of orbit quantum number m = 0, then equations (29)
and (30) become

W (t) = cos(2ηλt) e−γ t , (32)

and
γ = 4πα(ηλ)3 e−(2 ηλ

ωl
)2

. (33)

3. Results and discussion

In what follows we choose an InGaAs quantum dot with a dot
size of 150 nm (approximate size for the dot in [15]), and other
parameters are typical of InGaAs: g = −4, α = 0.05 ps2.
Figure 1 presents the population inversion of electron spin as
a function of time with two magnetic fields. Generally, the
oscillation will damp out quickly when magnetic field strength
B becomes smaller. The magnetic field strength in the broken
curve is ten times larger than that of the solid line. In the
first 10 ps, these two curves are overlapped, which means the
damped times in this period are almost the same. After about
20 ps, the amplitude of each curve is not changed, but the
delay of the broken curve gradually increases. Therefore, if
a strong magnetic field such as superconducting magnetic field
is applied, the damped time will be longer.

Figure 2 depicts the same behavior of population inversion
of electron spin as in figure 1, while the only difference is that
B is fixed and αR is changed for three values. Grundler [18]

3
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Figure 2. The population inversion as a function of time with three
spin–orbit coupling constants. The parameters used are
L0 = 150 nm, B = 90 mT, g = −4 and α = 0.05 ps2.

Figure 3. The population inversion as a function of time with three
quantum dots. The parameters used are B = 90 mT, α = 0.05 ps2,
g = −4 and αR = 0.8 × 10−12 eV m.

has shown that spin–orbit coupling constant αR changes with
electron density, which can be simply controlled by gate
voltage. In a recent paper, Koga et al [19] have reported that
αR can be varied in the range 0.3 × 10−12–1.5 × 10−12 eV m.
The oscillation behaviors of these three curves are very similar,
as shown in figure 2. A small increase of spin–orbit coupling
gives rise to a relatively large change of the damped time.
When t = 104 ps, the oscillation for αR = 1.5 × 10−12 eV m
starts to damp; however, the solid curve (αR = 0.1 ×
10−12 eV m) is not changed. This behavior stems from the
parametric dependence of αR in equations (32) and (33).

From figure 3, we can see that population inversion of
electron spin also changes with the size of the QD. In this
case, the magnetic field is set to B = 90 mT. The damped
oscillations are greatly affected by the size of the QD. It is
observed that for the case of a small quantum dot with L0 =
10 nm the population inversion damps quickly, within about

Figure 4. The damping rate γ as a function of L0. The parameters
used are B = 90 mT, α = 0.05 ps2, αR = 0.8 × 10−12 eV m and
g = −4.

Figure 5. The damping rate γ as a function of magnetic field B and
spin–orbit coupling interaction αR . The dot size is chosen to be
L0 = 150 nm, α = 0.05 ps2 and g = −4.

(This figure is in colour only in the electronic version)

5000 ps. But when the dot size is large as L0 = 150 nm (just
like the case in [15]) the damped time increases significantly.

Figures 4 and 5 demonstrate how damping rate changes
with three parameters: dot size, magnetic field and spin–
orbit interaction. The damping rate as a function of quantum
dot size L0 is shown in figure 4. When L0 is smaller than
60 nm, the damping rate decreases quickly and approaches
zero with increasing L0. When L0 becomes larger than
100 nm the decrease of γ slows down, and for L0 = 150 nm
γ is almost zero. This is because the cut-off frequency is
inversely proportional to the dot size and equation (33) shows
an exponential relation between the damping rate and the cut-
off frequency. As a result, the dot size has a significant
dependence on the damping rate. Equations (32) and (33)
also indicate that the damping rate γ is greatly dependent
on the spin–phonon coupling constant, spin–orbit coupling
constant and magnetic field strength as the dot size is fixed.

4
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From figure 5, it is obvious that by increasing the magnetic
field or spin–orbit coupling the damping rate is reduced and
the oscillations will persist for a long time. From these two
figures, it is found that the characteristic decoherence time
T2 = 1/γ is about 1 μs, which is long enough for quantum
computation. Consequently, the damping rate of the spin–
orbit-driven coherent oscillation can be effectively controlled
by the magnetic field, dot size and spin–orbit interaction.

4. Conclusions

In summary, we have investigated the influence of spin–phonon
interaction on the spin–orbit-driven coherent oscillation
proposed by Debald and Emary [15]. The analytical results
of coherent dynamics and the damping rate are obtained as
functions of magnetic field strength, spin–phonon coupling
constant, spin–orbit coupling constant and dot size. It is shown
that the damping rate is reduced significantly for large QDs
and strong magnetic fields. As the dot size and the spin–
orbit coupling are fixed, the damping rate only depends on
external magnetic fields, so in a realistic experiment we expect
that a strong magnetic field will reduce damping rate and
prolong such an oscillation lifetime. Finally, it should be noted
in the present paper that a magnetic field component in the
x–y plane or a tilt magnetic field will influence the
decoherence rate due to the phonon bath as discussed by
Golovach et al [24]. Here, for the sake of analytical simplicity,
we only consider a magnetic field along the z direction. The
effects of a magnetic field component in the x–y plane or a tilt
magnetic field will certainly have an impact on the decoherence
rate of electron spin. However, we cannot obtain the analytical
results in such a general case by using the present treatment.
The numerical methods for this case are underway.
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